Mono-Gold

24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress

Silicon (Si) and 24-Epibrassinolide (EBL) were exogenously applied to assess the photosynthetic efficiency in Brassica juncea under salt stress and to correlate it with the antioxidant system. Seeds of B. juncea were sown in pots and supplemented with NaCl at 15-day stage. Si and EBL treatments were given at 20 and 25-day stage, respectively. Net photosynthetic rate and stomatal conductance reduced significantly in the presence of NaCl. The spray of Si and EBL alone or in combination significantly increased the growth and photosynthetic traits in the presence/absence of NaCl stress. The antioxidant activity (catalase, peroxidase and superoxide dismutase) and proline content got enhanced by salt stress which was further enhanced upon follow-up treatment with 24- epibrassinolide and silicon alone or in combination. A combined effect of Si and EBL counters the damaged caused by the salt stress.

 

Exogenous 24-epibrassinolide promoted growth and nitrogen absorption and assimilation efficiency of apple seedlings under salt stress

The findings demonstrated that NaCl stress greatly hampered seedlings’ root growth and that exogenous EBR application obviously alleviated this growth suppression. Exogenous EBR-treated plants under NaCl stress displayed the more ideal root morphology and root activity, stronger salt stress tolerance and photosynthetic capacity as well as higher C- and N-assimilation enzyme activities, NO−3 ion flow rate and nitrate transporter gene expression level than did untreated plants. Furthermore, the results of isotope labeling noted that exogenous EBR application also enhanced 13C-photoassimilate transport from leaves to roots and 15NO−3 transport from roots to leaves under NaCl stress. Conclusion: Our findings imply that exogenous EBR application, through strengthening photosynthesis, C- and N-assimilation enzyme activities, nitrate absorption and transport as well as synchronized optimizing the distribution of seedlings’ C and N, has a fundamental role in improving NUE in apple rootstock seedlings under salt stress.

 

24-epibrassinolide induces protection against waterlogging and alleviates impacts on the root structures, photosynthetic machinery and biomass in soybean

Plants exhibit several restrictions under waterlogging conditions, including stomatal limitations, negative impacts on gas exchange, lower nutrient uptake and reduced growth. 24-epibrassinolide (EBR) is a polyhydroxylated steroid, with the advantages to be a natural and biodegradable molecule, presenting beneficial roles in metabolic and physiological processes. The aim of this research is to investigate whether EBR can protect soybean plants against damage caused by waterlogging and evaluate the responses associated with the root and leaf anatomy, photosynthetic machinery and biomass. This study used a completely randomized factorial design with two water conditions (control and waterlogging) and three concentrations of 24-epibrassinolide (0, 5 and 10 nM EBR). This steroid stimulated the activities of enzymes linked to the antioxidant system and resulted in minor damage to the chloroplast membranes. EBR maximized the efficiency of photosystem II and improved the gas exchange, which was explained by the higher density and index of the stomata in addition to the increased chlorophyll content and electron transport rate. In root structures, EBR mitigated the impact of waterlogging on vascular cylinder and metaxilem, suggesting maintenance and functions of these structures in plants stressed.

 

Impact of 24‑epibrassinolide, spermine, and silicon on plant growth, antioxidant defense systems, and osmolyte accumulation of maize under water stress

The effect of triad application of the phytohormone 24-epibrassinolide (EBL), the polyamine spermine (Spm), and the element silicon (Si) has not yet been considered on plant growth and behavior in water-stressed conditions. We aimed to evaluate the impact of single/dual/triad application of 24-epibrassinolide (EBL), spermine (Spm), and silicon (Si) on the growth, photosynthetic metabolites, and antioxidant enzymes in the maize plant exposed to water stress. This study was conducted as a potential drought resistance system and plants' maintenance against oxidative damage. In this regard, one maize hybrid (Paya) was grown under well-watered and water-deficit conditions (interrupted irrigation at the flowering and the filling seed stages) with and without foliar spraying of EBL, Spm, and/or Si. Drought conditions remarkably reduced growth, productivity, water-related content (RWC), and chlorophyll content. However, the dual and triad applications of EBL (0.1 mg L−1), Spm (25 mg L−1), and Si (7 mg L−1) significantly improved the above parameters. Water stress considerably augmented the levels of H2O2 and MDA. Their content in stress-subjected plants was significantly reduced by triad application. In water-stressed circumstances and after foliar treatments, the activities of superoxide dismutase, catalase, and peroxidase as well as the amounts of total soluble proteins, phenolic compounds, proline, and glycine betaine all improved. Overall, triad application increased the plant's drought resistance and diminished ROS accumulation by raising the scavenging via the enhanced activity of the antioxidant enzymes.

 

Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings

Shoot and root lengths declined by 46.43% and 52.78%, respectively, following Cd stress. Shoot and root dry weights also declined with Cd toxicity. Biochemical and physiological aspects exhibit significant decline including total chlorophyll (33.09%), carotenoid (51.51%), photosynthetic efficiency (32.60%), photochemical quenching (19.04%), leaf relative water content (40.18%), and gas exchange parameters (80.65%). However, EBL or Si supplementation alone or in combination modulates the previously mentioned parameters. Cadmium stress increased proline and glycine betaine (GB) contents by 4.37 and 2.41-fold, respectively. Exposure of plants to Cd stress increased the accumulation of H2O2, malondialdehyde content, electrolyte leakage, and methylglyoxal, which declined significantly with EBL and Si supplementation, both individually and in combination. Similarly, Cd stress adversely affected enzymatic and non-enzymatic antioxidants, but EBL and/or Si supplementation maintained antioxidant levels. Glyoxalase I (GlyI) accumulated after Cd stress and increased further with the application of EBL and Si. However, GlyII content declined after Cd stress but increased with supplementation of EBL and Si. Cadmium accumulation occurred in the following order: roots > shoots>leaves. Supplementation with EBL and Si, individually and in combination reduced Cd accumulation and enhanced the uptake of macronutrients and micronutrients in shoots and roots, which declined with Cd toxicity.

 

Silicon-mediated role of 24-epibrassinolide in wheat under high-temperature stress

High temperature poses a severe extortion to productivity of many crops like wheat. Therefore, well documented roles of brassinosteroid (BR) and silicon (Si) in terms of abiotic stress tolerance, the current study was designed to evaluate the response of wheat (Triticum aestivum L. Var. PBW-343) to 24-epibrassinolide (EBL) mediated by silicon grown under high temperature stress. At 10- and 12-day stage after sowing, the seedlings were administered Si (0.8 mM) through the sand, and the plants at 20, 22, or 24 days after sowing (DAS) were given EBL (0.01μM) through foliage. Plants were treated to high-temperature stress (35/28 or 40/35 °C), for 24 h with 12-h photoperiod in plant growth chamber at 25- and 26-day stage of growth. High temperatures cause significant reduction in growth performance and photosynthesis-related attributes at 35 days after sowing. However, antioxidant enzymes and proline content also augmented substantially with increasing temperature. BR and Si enhanced antioxidant activity and proline content, which was earlier increased by the high temperature. It is established that interaction of EBL and Si considerably improved the growth features, photosynthetic efficacy, and several biochemical traits under high-temperature stress through elevated antioxidant system and osmoprotectant.